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11.1 Let (M, g) be a smooth Riemannian manifold.

(a) For any smooth function f : M — R, we will define the Hessian Hess[f]| to be the
(0, 2)-tensor
Hess[f] = Vdf.

Show that, in any local coordinate system,
HQSS[fL'j = 813]]” - Ffjﬁkf

Deduce that Hess(f) is a symmetric tensor. Show also that, for any p € M and X € T, M,

2

Hess[f](X,X) = %(f o ()

,  where v is the geodesic y(t) = exp,(tX).

t=0

(b) For f: M — R, let ¢ € R be such that S = f~!({c}) is a smooth hypersurface of M and
df # 0 on S. Show that the scalar second fundamental form b(-,-) of S with respect to
the coorientation determined by gradf = df* is given by

_ Hess[f](X,Y)
[grad f|

b(X,Y) = for all X,Y € T(M, S).
11.2 Let (M, g) be a smooth Riemannian manifold.

(a) The Einstein tensor G of (M, g) is the (0, 2)-tensor defined by
. 1
G = Ric— =9y,
2
where S is the scalar curvature of g. Show that G is divergence free, i.e.
gabvaGbc = 0.

(Hint: You might want to use the second Bianchi identity.) Deduce that if (M, g) satisfies

Ric = Ag

for some smooth function A : M — R and dimM > 3, then A = const on each connected
component of M (Hint: Show first that, in this case, G = N'g for some different function
A’). A Riemannian manifold satisfying such a relation is called an Einstein manifold.

ow that 1 ,g) 1s a connecte instein maniftold of dimension dim = 3, then
b) Sh hat if (M i d Einstei ifold of di ion dimM = 3, th
(M, g) has constant sectional curvature. (Hint: FEzercise 9.1.c might be helpful.)

Remark. According to the theory of general relativity, a vacuum region of our spacetime
(i.e. where matter is absent) is modelled by a Lorentzian manifold (M, g) satisfying G = Ag,
where A is known as the cosmological constant. The above results indicate that non-trivial
vacuum spacetimes exist only when dimM > 4.
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11.3 Let (M, g) be a smooth Riemannian manifold.

(a)

11.4 (a)

A 2-dimensional surface S C M is called ruled if, for every p € M, there exists a curve
v (=60,0) = M with v(0) = p, 4(0) # 0 which is a geodesic of (M, g) and lies entirely
inside S. Show that, in this case,

K, < K[T,S] forall pe S,

where K, is the sectional curvature of S with respect to the induced metric g, while K[T,,5]
is the sectional curvature of the plane 7,5 C T, M with respect to the ambient metric g.
This is known as Synge’s inequality.

Let ¢ be a point in M and let Q@ C T, M be a convex open neighborhood of 0 such that
exp, is a diffeomorphism when restricted on 2. Let S C M be the surface defined by
S = exp, (Q2NV), where V is a 2-dimensional subspace of T,M. Show that S is a ruled
surface. Moreover, show that at the point ¢:

K, = K[T,S).

Let S C (R?, gg) be a smooth surface which is contained inside the ball
Br={ze€R*: |z|| < R}

and such that there exists a point z € S with z € B (i.e. ||z|]| = R). Deduce that S and
Sr = 0Bpr have the same tangent plane at z. Show that the sectional curvature K of S

satisfies at the point z
1

ﬁ.
Hint: It might be useful to compare the sectional curvatures of S and Sg at z by expressing

both surfaces locally as graphs of functions defined over their common tangent plane T,S
and use Erercise 9.1.

K. >

A surface S C R? is called minimal if it has vanishing mean curvature H (such a surface
is a stationary point of the total surface functional A[S] = [ dg, hence the name). Show
that a minimal surface satisfies K’ < 0. Deduce that there is no compact minimal surface
in R3. (Hint: For a compact minimal surface S, start from a sphere completely surrounding
S and decrease its radius until you end up with a sphere both containing S and touching
S at a point z.)

*11.5 Let v :[0,1] = M be a geodesic of (M, g). Assume that there exist points 0 < a < b < 1 and
a vector field Z along v with Z 1 + satisfying the Jacobi equation

V5Vs5Z = R(7, Z)7 =0
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and such that
Z(a)=7Z(b)=0

with Z not identically 0 on [a,b]. Show that v cannot be length minimizing among all curves
connecting v(0) to v(1). (Hint: You have to construct a variation ¢s of ¢g = 7 fizing the
endpoints of v such that ;—;(ﬁ(qﬁs)ﬂs:o < 0.70 this end, consider first the variation determined

by a variation vector field which is equal to Z in [a,b] and 0 otherwise, and then consider small
perturbations of this vector field around t = a,b .)
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