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11.1 Let (M, g) be a smooth Riemannian manifold.

(a) For any smooth function f : M → R, we will de�ne the Hessian Hess[f ] to be the
(0, 2)-tensor

Hess[f ]
.
= ∇df.

Show that, in any local coordinate system,

Hess[f ]ij = ∂i∂jf − Γk
ij∂kf.

Deduce thatHess(f) is a symmetric tensor. Show also that, for any p ∈ M andX ∈ TpM,

Hess[f ](X,X) =
d2

dt2
(
f ◦ γ(t)

)∣∣∣
t=0

, where γ is the geodesic γ(t) = expp(tX).

(b) For f : M → R, let c ∈ R be such that S = f−1({c}) is a smooth hypersurface of M and
df ̸= 0 on S. Show that the scalar second fundamental form b(·, ·) of S with respect to
the coorientation determined by gradf = df ♯ is given by

b(X, Y ) = −Hess[f ](X, Y )

∥gradf∥
for all X, Y ∈ Γ(M, S).

11.2 Let (M, g) be a smooth Riemannian manifold.

(a) The Einstein tensor G of (M, g) is the (0, 2)-tensor de�ned by

G = Ric− 1

2
Sg,

where S is the scalar curvature of g. Show that G is divergence free, i.e.

gab∇aGbc = 0.

(Hint: You might want to use the second Bianchi identity.) Deduce that if (M, g) satis�es

Ric = Λg

for some smooth function Λ : M → R and dimM ⩾ 3, then Λ = const on each connected
component of M (Hint: Show �rst that, in this case, G = Λ′g for some di�erent function
Λ′). A Riemannian manifold satisfying such a relation is called an Einstein manifold.

(b) Show that if (M, g) is a connected Einstein manifold of dimension dimM = 3, then
(M, g) has constant sectional curvature. (Hint: Exercise 9.1.c might be helpful.)

Remark. According to the theory of general relativity, a vacuum region of our spacetime
(i.e. where matter is absent) is modelled by a Lorentzian manifold (M, g) satisfying G = Λg,
where Λ is known as the cosmological constant. The above results indicate that non-trivial
vacuum spacetimes exist only when dimM ⩾ 4.
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11.3 Let (M, g) be a smooth Riemannian manifold.

(a) A 2-dimensional surface S ⊂ M is called ruled if, for every p ∈ M, there exists a curve
γ : (−δ, δ) → M with γ(0) = p, γ̇(0) ̸= 0 which is a geodesic of (M, g) and lies entirely
inside S. Show that, in this case,

K̄p ⩽ K[TpS] for all p ∈ S,

where K̄p is the sectional curvature of S with respect to the induced metric ḡ, whileK[TpS]
is the sectional curvature of the plane TpS ⊂ TpM with respect to the ambient metric g.
This is known as Synge's inequality.

(b) Let q be a point in M and let Ω ⊂ TqM be a convex open neighborhood of 0 such that
expq is a di�eomorphism when restricted on Ω. Let S ⊂ M be the surface de�ned by
S = expq(Ω ∩ V ), where V is a 2-dimensional subspace of TqM. Show that S is a ruled
surface. Moreover, show that at the point q:

K̄q = K[TqS].

11.4 (a) Let S ⊂ (R3, gE) be a smooth surface which is contained inside the ball

BR =
{
x ∈ R

3 : ∥x∥ ⩽ R
}

and such that there exists a point z ∈ S with z ∈ ∂BR (i.e. ∥z∥ = R). Deduce that S and
SR = ∂BR have the same tangent plane at z. Show that the sectional curvature K of S
satis�es at the point z

Kz ⩾
1

R2
.

Hint: It might be useful to compare the sectional curvatures of S and SR at z by expressing
both surfaces locally as graphs of functions de�ned over their common tangent plane TzS
and use Exercise 9.1.

(*b) A surface S ⊂ R
3 is called minimal if it has vanishing mean curvature H (such a surface

is a stationary point of the total surface functional A[S] =
�
S
dḡ, hence the name). Show

that a minimal surface satis�es K ⩽ 0. Deduce that there is no compact minimal surface
in R3. (Hint: For a compact minimal surface S, start from a sphere completely surrounding
S and decrease its radius until you end up with a sphere both containing S and touching
S at a point z.)

* 11.5 Let γ : [0, 1] → M be a geodesic of (M, g). Assume that there exist points 0 < a < b < 1 and
a vector �eld Z along γ with Z ⊥ γ̇ satisfying the Jacobi equation

∇γ̇∇γ̇Z −R(γ̇, Z)γ̇ = 0

Page 2



EPFL� Spring 2025

Series 11

Di�erential Geometry III:

Riemannian Geometry
G. Moschidis

7 May 2025

and such that
Z(a) = Z(b) = 0

with Z not identically 0 on [a, b]. Show that γ cannot be length minimizing among all curves
connecting γ(0) to γ(1). (Hint: You have to construct a variation ϕs of ϕ0 = γ �xing the
endpoints of γ such that d2

ds2
(ℓ(ϕs))|s=0 < 0.To this end, consider �rst the variation determined

by a variation vector �eld which is equal to Z in [a, b] and 0 otherwise, and then consider small
perturbations of this vector �eld around t = a, b .)
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