

11.1 Let (\mathcal{M}, g) be a smooth Riemannian manifold.

(a) For any smooth function $f : \mathcal{M} \rightarrow \mathbb{R}$, we will define the Hessian $Hess[f]$ to be the $(0, 2)$ -tensor

$$Hess[f] \doteq \nabla df.$$

Show that, in any local coordinate system,

$$Hess[f]_{ij} = \partial_i \partial_j f - \Gamma_{ij}^k \partial_k f.$$

Deduce that $Hess(f)$ is a symmetric tensor. Show also that, for any $p \in \mathcal{M}$ and $X \in T_p \mathcal{M}$,

$$Hess[f](X, X) = \frac{d^2}{dt^2}(f \circ \gamma(t)) \Big|_{t=0}, \quad \text{where } \gamma \text{ is the geodesic } \gamma(t) = \exp_p(tX).$$

(b) For $f : \mathcal{M} \rightarrow \mathbb{R}$, let $c \in \mathbb{R}$ be such that $S = f^{-1}(\{c\})$ is a smooth hypersurface of \mathcal{M} and $df \neq 0$ on S . Show that the scalar second fundamental form $b(\cdot, \cdot)$ of S with respect to the coorientation determined by $\text{grad}f = df^\sharp$ is given by

$$b(X, Y) = -\frac{Hess[f](X, Y)}{\|\text{grad}f\|} \quad \text{for all } X, Y \in \Gamma(\mathcal{M}, S).$$

11.2 Let (\mathcal{M}, g) be a smooth Riemannian manifold.

(a) The Einstein tensor G of (\mathcal{M}, g) is the $(0, 2)$ -tensor defined by

$$G = Ric - \frac{1}{2}Sg,$$

where S is the scalar curvature of g . Show that G is divergence free, i.e.

$$g^{ab} \nabla_a G_{bc} = 0.$$

(*Hint: You might want to use the second Bianchi identity.*) Deduce that if (\mathcal{M}, g) satisfies

$$Ric = \Lambda g$$

for some smooth function $\Lambda : \mathcal{M} \rightarrow \mathbb{R}$ and $\dim \mathcal{M} \geq 3$, then $\Lambda = \text{const}$ on each connected component of \mathcal{M} (*Hint: Show first that, in this case, $G = \Lambda'g$ for some different function Λ' .*). A Riemannian manifold satisfying such a relation is called an *Einstein manifold*.

(b) Show that if (\mathcal{M}, g) is a connected Einstein manifold of dimension $\dim \mathcal{M} = 3$, then (\mathcal{M}, g) has constant sectional curvature. (*Hint: Exercise 9.1.c might be helpful.*)

Remark. According to the theory of general relativity, a *vacuum* region of our spacetime (i.e. where matter is absent) is modelled by a Lorentzian manifold (\mathcal{M}, g) satisfying $G = \Lambda g$, where Λ is known as the *cosmological constant*. The above results indicate that non-trivial vacuum spacetimes exist only when $\dim \mathcal{M} \geq 4$.

11.3 Let (\mathcal{M}, g) be a smooth Riemannian manifold.

(a) A 2-dimensional surface $S \subset \mathcal{M}$ is called *ruled* if, for every $p \in \mathcal{M}$, there exists a curve $\gamma : (-\delta, \delta) \rightarrow \mathcal{M}$ with $\gamma(0) = p$, $\dot{\gamma}(0) \neq 0$ which is a geodesic of (\mathcal{M}, g) and lies entirely inside S . Show that, in this case,

$$\bar{K}_p \leq K[T_p S] \quad \text{for all } p \in S,$$

where \bar{K}_p is the sectional curvature of S with respect to the induced metric \bar{g} , while $K[T_p S]$ is the sectional curvature of the plane $T_p S \subset T_p \mathcal{M}$ with respect to the ambient metric g . This is known as *Synge's inequality*.

(b) Let q be a point in \mathcal{M} and let $\Omega \subset T_q \mathcal{M}$ be a convex open neighborhood of 0 such that \exp_q is a diffeomorphism when restricted on Ω . Let $S \subset \mathcal{M}$ be the surface defined by $S = \exp_q(\Omega \cap V)$, where V is a 2-dimensional subspace of $T_q \mathcal{M}$. Show that S is a ruled surface. Moreover, show that at the point q :

$$\bar{K}_q = K[T_q S].$$

11.4 (a) Let $S \subset (R^3, g_E)$ be a smooth surface which is contained inside the ball

$$B_R = \{x \in \mathbb{R}^3 : \|x\| \leq R\}$$

and such that there exists a point $z \in S$ with $z \in \partial B_R$ (i.e. $\|z\| = R$). Deduce that S and $S_R = \partial B_R$ have the same tangent plane at z . Show that the sectional curvature K of S satisfies at the point z

$$K_z \geq \frac{1}{R^2}.$$

Hint: It might be useful to compare the sectional curvatures of S and S_R at z by expressing both surfaces locally as graphs of functions defined over their common tangent plane $T_z S$ and use Exercise 9.1.

(*b) A surface $S \subset \mathbb{R}^3$ is called *minimal* if it has vanishing mean curvature H (such a surface is a stationary point of the total surface functional $\mathcal{A}[S] = \int_S d\bar{g}$, hence the name). Show that a minimal surface satisfies $K \leq 0$. Deduce that there is no compact minimal surface in \mathbb{R}^3 . (*Hint: For a compact minimal surface S , start from a sphere completely surrounding S and decrease its radius until you end up with a sphere both containing S and touching S at a point z .*)

* **11.5** Let $\gamma : [0, 1] \rightarrow \mathcal{M}$ be a geodesic of (\mathcal{M}, g) . Assume that there exist points $0 < a < b < 1$ and a vector field Z along γ with $Z \perp \dot{\gamma}$ satisfying the Jacobi equation

$$\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} Z - R(\dot{\gamma}, Z)\dot{\gamma} = 0$$

and such that

$$Z(a) = Z(b) = 0$$

with Z not identically 0 on $[a, b]$. Show that γ cannot be length minimizing among all curves connecting $\gamma(0)$ to $\gamma(1)$. *(Hint: You have to construct a variation ϕ_s of $\phi_0 = \gamma$ fixing the endpoints of γ such that $\frac{d^2}{ds^2}(\ell(\phi_s))|_{s=0} < 0$. To this end, consider first the variation determined by a variation vector field which is equal to Z in $[a, b]$ and 0 otherwise, and then consider small perturbations of this vector field around $t = a, b$.)*